Serieuze dating No registration no sign in dirty chat site

The general quality of the assignment is unknown, but in the (for this purpose) rather unrepresentative sample of users we considered for our own gender assignment corpus (see below), we find that about 44% of the users are assigned a gender, which is correct in about 87% of the cases.Another system that predicts the gender for Dutch Twitter users is Tweet Genie ( that one can provide with a Twitter user name, after which the gender and age are estimated, based on the user s last 200 tweets.Gender recognition has also already been applied to Tweets. (2010) examined various traits of authors from India tweeting in English, combining character N-grams and sociolinguistic features like manner of laughing, honorifics, and smiley use.

serieuze dating-34

Girls online cam on skype free - Serieuze dating

Then we describe our experimental data and the evaluation method (Section 3), after which we proceed to describe the various author profiling strategies that we investigated (Section 4). Gender Recognition Gender recognition is a subtask in the general field of authorship recognition and profiling, which has reached maturity in the last decades(for an overview, see e.g. Even so, there are circumstances where outright recognition is not an option, but where one must be content with profiling, i.e.

Then follow the results (Section 5), and Section 6 concludes the paper. For whom we already know that they are an individual person rather than, say, a husband and wife couple or a board of editors for an official Twitterfeed. the identification of author traits like gender, age and geographical background.

In this case, the Twitter profiles of the authors are available, but these consist of freeform text rather than fixed information fields.

And, obviously, it is unknown to which degree the information that is present is true.

Their highest score when using just text features was 75.5%, testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of about 418,000 tweets). (2012) used SVMlight to classify gender on Nigerian twitter accounts, with tweets in English, with a minimum of 50 tweets.

Their features were hash tags, token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count software (LIWC; (Pennebaker et al. Although LIWC appears a very interesting addition, it hardly adds anything to the classification.Computational Linguistics in the Netherlands Journal 4 (2014) Submitted 06/2014; Published 12/2014 Gender Recognition on Dutch Tweets Hans van Halteren Nander Speerstra Radboud University Nijmegen, CLS, Linguistics Abstract In this paper, we investigate gender recognition on Dutch Twitter material, using a corpus consisting of the full Tweet production (as far as present in the Twi NL data set) of 600 users (known to be human individuals) over 2011 and We experimented with several authorship profiling techniques and various recognition features, using Tweet text only, in order to determine how well they could distinguish between male and female authors of Tweets.We achieved the best results, 95.5% correct assignment in a 5-fold cross-validation on our corpus, with Support Vector Regression on all token unigrams.Later, in 2004, the group collected a Blog Authorship Corpus (BAC; (Schler et al.2006)), containing about 700,000 posts to (in total about 140 million words) by almost 20,000 bloggers. Slightly more information seems to be coming from content (75.1% accuracy) than from style (72.0% accuracy). We see the women focusing on personal matters, leading to important content words like love and boyfriend, and important style words like I and other personal pronouns.2009) managed to increase the gender recognition quality to 89.2%, using sentence length, 35 non-dictionary words, and 52 slang words.

Tags: , ,